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|i ABSTRACT

The arguments leading to the formulatieon of the Action Principle

for a general field are presented. In associatin with the complete roducticn

I of all numerical matrices into symmetrical and anti-symmetrical parts, the

general field is decomposed into two sets, which are identified with Bose-

Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of

fields is inferred from the time reflection Invariance requirement. The con-

sistency of the theory is verified in terms of a criterion involving the

various generators of infinitesimal transformations. Following a discussion

of charged fields, the elActromagnetic field is introduced to sAtisfy the

postulate of general gauge invariance. As an aspect of the letter, it is

recognized that the electromagnetic field and charged fields are not kine-J

matically independent. After a discussirn nf the field strength cormut-Rtion

Irelations, the independent dynamical vriqbles of the electrmagnetic field

are exhibited in terms of a special gauge.
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The general prmgrnm of this series(l)Is the construction of a

(1) Part I, Fhys. Rev. 82, 914 (1951)

theory of quantized fields in terms of a single fundnmantql dynwacal principle.

We shtll first present a revised otccount nf the developments contained in the

initial. paper.

The Dyn~mical PrIncirle

The trransformqimn functie'ns cmnnecting vnri---us repraS~ntti ns

have the two fundamental properties.

where symolizas 1hoth 1ntai'rqtior and sunrmiticn ovar tha elgervalue

spectrum. If 461 is, rny infinitosimn-1 '-ltoration of tha tmansfor-

* rnmqtinn function, wo znny vr.Tte3

which s-3rves ns the definition of the infinitesiml op. ritor

The3 requir3ment thnt nny infinitesimpl P.1t.rntion maintnin the multiplic'Itive

composition law of trannsformqitinn functions implies 9n 'idditiva comnrosition

law fcr the infinitesAmi.l ororators,

~3W~.>Wx +0 ~i~(2)
t

if the Ok andi r3prasont~tinnrs P'ro Idjntic-'1, we inf,3r tiv't

which expro3ss~s th- fix3d orthonvmrmeility roquirementi on tho eigenvectors of

Ia given represontntimn. On Identifying the o and representntions, we

* ~ ~ 1) loa tht A, t. -d 1't



The second property of transformqtion functions implies thnit

I or

tho infinitesimnl op~r,%tors FWa re Hermitinn.

The JW4A ( possess qnothe)r Additivity property referring to

th-3 composition of' two dyrinmicrlly :independent syste3ms. Thus, if I and II

designnto such systems,

and if sind f3 are th.3 op )rntors chqr'iCt3rizing infini-

vtesimil ch'pngas of the sdprnt tr'-nsforrmoticn furctions, th-t of tho composite

system is -a~r

Inf ini tes imnlr n~torftions of oigenvoct~mrs thvit pras3rva the ortho-

*normlity propertias hqve th., firm

*where the gener'ntor is an infiniteiial Hermitinn opir-itor which pososses

*an additivity prop-irty for theD composition of dynpmicnlly ind3pendent s:'stoms.

If the two eigonvectors of tr-nsformption fur~tion nr) vqriid indepandontly,

the resulting chango of the3 trennformition function hnS the3 gane3r.1 structura (1)

with Go



The vector

can be characterized as An eigenvector of the operator set

A -il s )4(1-+ OL (& -C4 - CT

with the oigenv"lues * Here

This infinitesimRl unitary transformwtion of the eigenvector ?(') induces

a trnnsformation of tny operntor F such thAt,ai 1'IF I (" ) = ( -; /FI/A"

W-3 write this in the form(A'A

i (J, IFI -) - (o'IF'

or, in virtue of the infinitesimal nature of the tr"nsformation,

where th" left 3ide refers to the change in the elierivoctors for a fixed F,

I while tho right side rrovides nn aquivalent vnrintion of the opirntor F, given

by CFT= F- F =-AL- EF,64.
If the change consists in the alteration of some param3tar

upon which th3 dynamical variables depend, and which mpy occur explicitly in

F, we have

.I F -( F),
I F + * rF - rF

where t-o F is the total alteration in F, from which is subtracted

C F , the change in F associated with the explicit appoarance of

since tho latt3r cAnnot be produced by mn operator tr~nsformntion. We thereby

obtain the "equation of motion" with respect to the parameter

-3-



0rF: - tiF L' E ' Ggo] (3)

For dynamic.l systems obeying the postulate of local action, com-

plate descriptions are provided by sets of physical quntities, ) P

associated with space-lika surfaces, d' . An infinitesimal alteration of

the general trAnsformation function (f I tA-49 ) is charcterized by

"IH3re the indices 1 and 2 refer both to the choice of P complete set of com-

muting Op3rntors , nnd to th, spac3-like surf-ce d- . We can, in

particular, consider tr-nsformwtions between the same set of opqrnters on

different surfpc~s, or betwean different sets of commuting opirrtors on the

sm3 surface, as in T(f'rI ') = ,. ( '" - '-) (5)

One typi of chenga of the genernl tr-nsforr'tion function consists

I in the introduction, independently on d-, and on Jr',, of inflinit3asimal unitry

tr'nsformntions of tho op3rators, including displ-cemirts of thesa surfaces.

Thu tr-nsformitions will be gan)r-t3d by oper-tors 6, -nd G., constructed

frnm dynpmicil vrialUs or d, and 0 , respectiv3ly, ind

When th. tr-nsformrqtion function connacts two d~ffernt s,:tq of operntors on

the sama surfaca, which aro subjucted to 1nfinlitasimz. transformptions gen3rn-

ted by 6 and re3spctlvely, we h'v3, r)f3zrring to (5),

Since physicil phonomn at distinct points on n speco-like surface nre dynnmi-

celly independent, % gon.rator 6 'must h~v3 the idditie form

I where is the numericlc measure of Pn oeleent of space-like ara and

-4-



6o(K) is to be regarded as ths time-like component of a vector in a

locAl coordinate nystem bAsed on Cr in order to give the surface integral

an invariant form. If one can interpret GA*Won 07 , and on OTl. , as

the values nf a vector defined at ll points, th3 diff3rence of surface into-

j grals in (6) can be transformed into the volume integral

A second type of transformation function alteration is obtninod

on considering thpt th3 tronsformation connecting , , and A,I can be constructed through the intermediary of an infinita succession of trAns-

tformations relating op3r-tors on infinitesimally neighboring surficas. Accord-

ing to the genoral additivIty property (2),

where CC T- chracterizas a zrodification of tho transformation

function connactinf infinitesimally differing complet3 sets of op3rntors on

tho infinitesimal]y seporrted surfnces 6- nnd 0--.ek7. If the choice of

intermediate oprators d3pends continuously upon tha surface, we shnll have

and, riforring agnin to the dynamicol independence of ph,3nomena at points

separntod by a spsce-like Interval, with the consequent additivity prop-rty,

we ses that f '4d, will have the genernl form

Tb eref ore fW: a) cW(x) %)

The combination of these twi types of modifications is described

by iv e + d (hsA)

which involves dynanic'l vrriables on the surfaces 017 , and in the

-5-



interior of the volume bounded by these surfaces. On the other hand, we can

write this as the volume integral

which indicates, convorsely, that any part of , possessing the form

of a divergence, contributes only to the genermtion of unitary transformations

on C and 0- .

The fundamental dynamical principle is contained in th3 postulate

that th3re exists a class of transformation function alterations for which

the characterizing operators Prwi/ are obtained by atppropriate variation

of n single operator ,12 P

Of course, this principls must be implemented by the explicit specification of

that class.

The operator W1 , the nction integral op3rntor, evidently pos-

seas the form L/i 2. = ald) J( I

The H3rmitinn requirement on V- W is satisfied if ki", is Hermitian,

which implies the same property for () , the Lagrqnge function operator.

In order that relations between states on 0-i and - be invnriantly

charact3riZ3d, the Lagrnnge function must be i scaler with respect to the

transformations of the orthochronous(2)Lorentz group, which pres3rve the temporal

order of

(2) This nnw wa suggested by R. J. Bhabha, Rev. Mod Phys. 21, 451 (1949)

and C% . A dynamical system is specified by exhibiting the Lagrnge

function in terms of a set of fundamental dynamical variables in the infini-

tesimal neighborhood of the point X . Contained in this Lagrqnge function

-6-



will be certain numerical pprmaeters, which may ba flunctons of X. . Any

change of these parameters modifies the structure of the Lagrange function and

is thus an alteration of the dynamical system. Accordingly, infinitesimal

changes of the dynamical system are described by

wh3re d-Ag), and the numerical parameters Are the object of vari-

ation. This form is in agreement with (8). For a fixed dynamical system,

A IA/. can be altered hy displacing the surfaces 0- , , and

by varying the dynamical vriqbles contained in the Lagrange function. The

j transformation function (1f,6 7 -i) describes the relAtion betwo3n two stntes

of tha given system so that a change in th3 transformatJon function can only

arise from alterations of the stAtes on And Hence,

4 for a fixed dynamical system wo must have

whare d- cF, o (,14') qnd the obj.3cts of vari.tion h-ro *re ,

I and the dynamical variabl3s of which a Is a function.

The latter statement is th3 opirator principle of stotionary

action. It asserts thAt Ws must be stqtionnry with respect tc vari-

ations of the dynamicnl variables in the interior of the r-3gion defined by

c5 and , since , and only contain dynnmical

variables associated with the boundaries of the region. This principlo implies

a equations of motion for the dynemicol vnriables, that is to say, field quntionu,

and provides expressions for the generators a I And a The class

of variations to which our postulate refers can now be defined through the

requirement that this information concerning field equntions And infinitesimal

unitary transformations be self-consistent.

-7.



There exists much freedom within this class, as may be inferred

from the remark that two Lsgr-nge functions, differing by the divergence of a

vector, describe the same dynrmical system. Thus,

yields

where, on each surface,

Accordingly, tho stntionary action principle for W, a is s-tisfied if it

is obeyad by / since

H.3re,

= ~ -- , (

define and 7 , which are naw gen-rmtors of infinit3sim'lI unitary transformations on '-, and ' , respectively. Tha latter

3quations possess the form (7), nnd thus chnrActerize trqnsfcrmition functions

connecting two different reprosentqtions on a common surface. Indeed, with a

suitably elaborate notation, we recognize in (9) the Rdditivity prop3rty of

* action operators,

VV
where, for oxmpe "' - 7

'7
I - ,

I -'

and

To be consistent with the postulate of loc.l action, the field

-8-



equations must be diffarential equations of finite order. One can always

convert such equations into systems of first order equations by suitable adjuno-

tion of vAriables. We shall designate the fundamental dynamicAl vriables that

obey first order field equations by Ir (,K) , wnich form the com-

ponents of the general field operator X (K) . With no loss in gener-

ality, we take ) ( ) to be a Hemitian operator,

If the Lagrange function is to yield field equations of the desired structure,

it must be linear in the first derivatives of th3 field operators with resp3ct

to the space-time coordinates. Furthermore, If these field equations are to

emerge as explicit equations of motion for field components, thmt part of the

Lngrnge function containing first ccordinate derivatives must be bi-linear in

the field components. With these preliminary remarks, w3 write the following

gen3ral expression for the Lagrnnge function,

4 _I )V , d-. ( 4 "
-_ , I " , ": ! , < , - ,

in which a matrix notation is emplnyed,

t The derivative terms have been symmotrized with respect to the operation of

integration by parts, a process which adds a div-irgence to the Lagrange function,

and is thus without effect on the structure of the dynamical system. In order

that 7 be a Hermitian operator, the general function must possess

this character,

and the numerical mJtri 'must be Skew-

Harmitian,

-9-



Although we ara interested in complete dynAmIcAl systems, it is

advantageous mathematically to euploy devices based upon the properties of

external sources. Accordingly, we add to (10) a term designed to describe

P ( A z ) , w h c
the generation of the field (X) by an ext.3rnml arurce ,

is to be regarded as a field quantity of the smo general nature as , ...),

This is a H.rmitian opertor if is a Hermitian matrix,

For the sourca concept to b3 meaningful, all components of 7, must occur

coupled with the source ccmpcnents in (11), %hich requires that l be a

non-singular num3rical matrix.

An orthochronous Lorentz transformation

induces a linear trqnsform-tion on th3 fi.)1d components,k r - t~!
where L must be a raql matrix,

a

to maintain the Hormiticity of , . The scslar raquirMnlt on / is

satisfigd if is a scaler,

and if

-10-



... I
We shnll suppose thmt the source possesses the same trnnsformation proporties

as the fiald. The condition for the source tarm of th3 Lngrange function to

be a scalar is then given by

Note t~t J and /1 also obey Eqs. (12) nd (13) respoctively, and

that theso eqtLstlons can be combined Into

in view cf th3 non-singultr crrct3r of /..

For nn inflnitsimpl Lorentz trinsfcrnntion
I

the matrix ,_ can be written

.. - " ,, ( .4 )! I-/I . -

whiro

The Infinitesimal V3rslon of (13) is

or

Fr

in which the complex conjugatS statements refir to the components indicated

in (15). Similarly,

- 6/-
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and

If one views a . s a field in the original ooordinrte system

and thus subject to the ame dependeee upon that coordinotte system as

it is inferred that

For infinitesimal trmnsform-tions, this reeds

/L~d ~ r . 47 - dVku OVA ' 0 1

In performing the variation of the action integral, we shall treat

the two types of quantities, coordinates and field variables, on somewhat the

same footing, although the former are numbers end the lttar op,,rators. We

introduce an arbitrary variation of tho coordinntes, x A,/ , throughout

the interior of the region, but subject to the ccndition thAt the boundaries

rema-in plane surfaces,

o ,-Y n - (17)

on 6 a- .nd 6F ; The field components ,(X) are depandant beth

upon tha coordinate system nnd the "intrinsic field". Undar a rotation of

the coordinate system, the field compon3nts Rro altered in the manner described

by (14). Accordingly, we write the genral variation of the fi3ld as th3 sum

of an intrinsic field variation, and of the variation induced by the local

rotption of the coordinnte system,

SC) , A'

where the anti-synietry of . ensures that only the rotation part of the

coordinAte displacement Is effective. For thi source field, a pr3scribed

function of the coordinates, we have

f A-XI-



We also remark that

and

whence

The Lorents invjrrinc3 of t produces a significant simplifica-

tion, in computing the contribution to J (0t) from the coordinmte induced

variation of * Thus, if d crA were anti-symmetrical and constant,

its coefficient in the vpriqtion of the Lagrange function would vanish iden-

tically, save for the source term since the roteition Induced change of ' is

not present in (18). Accordingly, for th3 generil ccordinnte vnriation of

(10), thar3 remains orly those terms in which d Is differentiated,

types re contained entirely in (19),. which leds to

nhfd

* ~~~L- (dJ~( ~ t e)

In virtue of the symmetry of the second derivative,

( J) 9 fxA
,L4~ Vol

~(~sc~X +~Ac~j X1jA*A)

-13-4,



where the lIutt stop expres os the result of an integrmtion by parts, for

which the integrated term vaenshes, since the diltion tensor is Zsro on

th) boundaries (Eq. (17)). Ccllgcting the coefficients of dk rx,
into the to /r . wo hA V3

'A 100

Cf N/1
Ir i  (a V)I " -,)7

wh re

and we have employed P notation for the sym.3trier.l pmrt of n t3nsor,

Tha exprisvion fo- is

J- (i ' Cx,,- . r- 0

Hanc3, on Ap;_y'd, 7 r-'i,,o cf -+,tLcrnr; tattin tc coordinata end

fl3d vwrintionr, s.-pnrnt,3!y, .a obtain

and (f.1 &)

iwhile the sarfac3 terns y-Jola, on 07 nnd ,the infinitesimal gener-

ator



The prator W is an arbitrary, invriant function of the

field If its rtqtton is to possess the form (21), with

appearing on the left and on the right, the' atter must possess elemntary

operator prcparti3s, characterizing the class of vsriations to uich the

action principle refers. Thus, we should be able to displace 4 - entirely

to the left, or to the right, in the stricture of

which defines the loft and right dsrivutives of with rsp~ct tc . .

In view of the CCmpletO3 symmetry b3twaen left and right in the process of

multiplication, we irfer tbpt the oxprossicns with cTZ on th3 1oft

and on the right are, in fact, identical. The field equaitions, threfor3,

fpossess tho two oquivlent forms

and - cnn be equivalently written

•7
21 2

In keeping with the restriction of th3 stationary action prin-

ciple to fixad dyn'micql systems, th3 cxtarnrl source h~s not been ltared.

If we ncw introduce an infinitesimnl vriation of ,ad extend the

argument of the previous paragrnph to d , we obtain the two

equivalent expressions for the change induced in L/

a 'Y)C



E

The correeponding modification in the relation between states on C" and

on 0L cn be sacribed to the individual states only if one introduces

a convention, of the nnture of o% boundary onadition. Thus, we may suppose

tthat the state on is unaffected by varying the external source in

the region between " and OZ . In this "retarded* description,

Sf wa generates the infinitesimal transfcrmation of th3 state on

- An alternative, "advanced" description corresponds to - J 1

generating the change in the state on , with a fixed state on

These are just the simplest of possible boundary conditions.

The suitability of the designstirns, r3tarded and advanced, can

be seen by considering the matrix of an operator constructed from dynamical

variables on some surface , intermediAte between I and :57

An infinitesimal chnnge of the source e produces thb following change in

the matrix element,

Dr

in which we hmv3 allowed fcr the possibility that F(r') may "e ex-

plicitly dependent upon the source, and introduced A notation for temporRUy

ordered products. The matrix element depends upon the external source through

the operator F(6) , and the eigenvectors on and O .* One

thereby gets various exprissions for , depending upon the boundary

conditions that are adopted. Thus, if the state on is prescribed,

we find

-/ 4

.16.



* :4 (F(r)* ,'(r)( f
w hich only invlves changes in the scurce prior top or on 1 1 The

opposite convention yields the analegeuu result

-d f)~ F )- [F CT ).2 F~ir) Jv

Note that

r)/),. --- _ ) 4 d)
The operator G of Eq. (22) consists rf two parts,

2where

j and

The latter form of 1. a cwoquence of the restrictirn to plane

p -lka surfaces, limiting dipl 3i°ts to infinitosimnl translations ard

*rotations,

with the-associated cperatorsvAK enargy-mmentum vector

and angular momentum tansor

The operator GchM evidently generates the infinitesimal

transformetion of an eigenvestor, produced by the displacement of the surface

47-



to whioh it refers. ith the notation

we have
*11

and

I Fr) is an arbitrary function of dynamicoal variabl3s on 7- , and

possibly of non-dynamical parameters dependent on Or- , we use the notation

I

to distinguish between the total change on displacement, and that occasioned

by the explicit appearance of non-dynamicml parameters. On referring to Eq (3),

we see that

V ~ ~ ~ v ~F(r)zF() [4'7 1

The proper interpretation of the generating operator C can

be obtained by noting its equivalence with an appropriately chosen infinitesi-

mal variation of the external source. Consider the following infinitesiml

surface distribution on the negative aide of 0

1 (a
which is not incompatible with the operator properties of these variations.

-18-



We have assumed, for simlioity, that the equation of the surface L7- is

K(O) 0. With this choice,

The change that is produced in Tk can be deduced from the variation of

the field equations,

=-~ ~ r °r(X(0o,).

Evidently th3ra is a discontinuity in c j , on crossing the surface
distribution which is given by

In the retarded description, say, is zero prior to the source

bearing surface, so that the discontinuity in is the change induced in

on (the positive side of) 0r- .Thus, the surface variation of

the external source similstes the transformation generated by 6- in

which o on 0- is replaced by

(The matrix has been retained in this statement since it is

a singular matrix, in gen3ral. The number of components of that appear

* independently in (25) equals the rank of the matrix and this is the

number of indepandent component field equations that re equaticns of motion,

in that they contain time-like derivatives. Thu expression of (25) in terms

of the generator is

L-9;



I j, 7

The factor of 1/A that appears in this result stems from the treatment of

all components of #40) /$ on the same footing; we have nct divided them

into two nots of which one in fixed and the other varied. If / is an

arbitrary function of 4 0) 'Z on " , we write

When the field equations that are equations of constraint prove sufficient to

express all componnts of . in terms of ,we can ext3nd (26)

into

Of course, one must distinguish between theme variations, in which only the

S) Z are indapendent, and the independent variations of all

components of which produce the equatirns of crntrint from the

f action principle.

In order to facilitate th3 explicit construction rf the field

c(ormutation relations, w3 shall introduce a reducibility hypothesis, which is

associated with the Lorentz invariant process of separating tha matrices

. , into symmetrical and anti-syumetrical parts. We

r3quire that the field and the source decompose into two sets, of the first
6in 1 .() (2) )= , f '= e , and of the second kind, 7 k, ,

as a concomitant of the decomposition

1-20



The matrices ef the first kind are real (4. a A those of the

second kind are imaginary. We shill net write the distinguishing index whon

no confusion is possible.

According to this reducibility hypothesis, the field equations in

the two equivalent forms

separate into the tvc sets

a$ and

I Furthermore, the generator

I ~ decomposes into 6 0~ where

and

= foicr ~2%~) do' fd(' ) (a (7)

Those results reflect the form assumed by the Lagrpnre function,

The equivalence between left and right d~rivatives of the arbi-

trary function , with respect to field cc-mponents of the first kind,

and et the two expressirns for 6:, shcws thAt d coumtes

-21-.



with all fields at the some point. It is compatible with the field equRtions

to extend this statement to fields at arbitrary points,

Lf,

provided the source components are included,

It follows from (27) th%%t the relation between and 6 C is one

of anti-commutativity. The opposite signs of the left and right derivktives

of with respect to is then accounted for by

provided only that is an even function of the variables of the

second kind. The inclusion of the source components

L§f (x), cT W(xJ f774) WA'?

ensures compatibility with the field equvtions. We have now obtnined the

explicit characterization of the class of variations to uhtich our fundarental

postulate refers.

Let us also notice that

d N. f- j' (d) 7-- S o"f" =C cA) (6'6r') Z

decomposes into ' L (L, ,who re

07,'.
4

and

We can conclude that source variations hav3 the stme operator properties as

field variations, as already exploited in Eq (24).

The operator properties of T() , on a tiven - can

-now



now be deduced from (26), with the results

' [ 'o W >) 4''A)2()?>~ &?je

.n which Jr. - ') is the threo-imentionl deltA function appropriate

to the surface ( . The numerical forms of these commutators and anti-

counutators ensures their consistency with the operator properties of

(o 0~ and CfTf(O) 5k' . The dynamical viriqbles of the first and
I* second kind thus describe Bose-Einstein and Fermi-Dirac fields, respectively,

which are unified in the general field X .

Since the rank of the Rntisy Metrical matrix is

necessarily even, there are an even number of inrlependent fild components

of ths first kin., say ZM7 () e crn alays rrnge the matrix A(0)

s that all elements are z-re beyond the first a 7 /) rows end columns.

We shall denote this non-singular sub-matrix of dimensionality o 4m (1) (y'

, and the associated independent components of ? by 0

The first commutation relation of (;Z ~ can then be written

4 The matrix 13(a) associated with Fermi-Dirnc fields, is Rntisymatrisal

and non-singular. Hence, the total number of field components of the second

kind is even. If we allow for the possibility that O may be singular,

and arrange the rows and columns so that the non-singular sub-matrix

is associated with the independent components e , obtain

-23-



= II
which requires thAt the real, synetricol matrix 1 A., be positive

definite.

We shall argue that the number of Independent fiold components

of the second kind, the dimensionality of A' , must be even, -

Lot us imagine that, by a suitable real transforration, A6 i s brought

into eiagond. form. If the numbor of ccmonents in Y is ode, the

product of all these components at a given point commutes with at that

point. Thus, as far as the ilgsbrR c-f operators at a given point is concerned,
this product is a multiple of the irnit op-3rmtor (the necesary emmutativity

with at other points on can alwys b-3 achieved), which

contradicts the assumpticn thmt all components Of are independent.

The relation between invariance under tire reflection, and the

connection between spin an! statistics, may be noteA here. Thi time reflection

transformaticn

a X ,X X,

induces a transformntion of the field

such thait
L 4 L V -- 4

and 71

L L B H(Lx)= H(X)
However, this preservation of the form of the Lagr"nge function

i 'Aiis only apparent, for fields of the second kind. Since ("i) ,, is a



non-negative matrix, one can only satisfy the first equation of (29) with an

imaginary LZo ikich produces skew-Hermitian field components

But the invariance of the Lagrnge function is not the correct criterion for

invariance under time reflection. The rewvrsal of the time sense inverts

the order of a-. and 0' , and thus introduces a minus sign in the

action integral, which can only be compensated by chaiwing the sign of

In (4). We shall describe this as a transformation from the algubra of the

oparators Z to the complex conjugate algebra of op3rators

Since the linear trsnsformwtion deaioned to mAintain the ferm of

~, (& '9'Y~has effectively replaced with~&~~ (4 'k, #'

the criterion for invariance reads
- ( ;=/

The derivative term in is indeed invritnt since the mtrics ,

and Al" are real and Imaginary, rospectively. We t'escribo this by

saying th-t the theory is kinematically invrinnt uncler time reflection. In

order that it be Oynamicnlly invriant, must b. such that

aA ,-7( " 0 ,'

Since H is an oven function nf the components of , the

latter are tc be paired with the aid of imaginary m-trices, charcteristic

of tha variables of the secnnd kind. The source term is Invarinnt if srurce

and field tr.nsform in the same way.

The correlation between spin qne stAtistics enters on obsorving

that an imaginary L is characteristic of half-integral spin fields.

We can prove this by remarking that all tha tronsformation properties of

are satisfied by
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non-negative matrix, one can only satisfy the first equation of (29) with an

imaginary L- which produces skew-Hermitian field components

But the invariance of the Lagronge function is not the correct crit3rion for

invariance under time reflection. The revirsal of the time sense inverts

the order of 4r. anti "j. , and thus introduces a minus sign in the

action integral, which can only be compensated by charting the sign of

in (4). We shall describe this as a transformation from the algebra of the

cperators to the complex conjugate algebra of operators Z
Since the linear transformation designed to maintAin the form of
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the criterion for invariance reads

I

The derivative term in is indeed Invnrinnt since the mAtrices

and are real ani imaginary, rospectiv1y. W (liscribo this by

saying th-t the theory is kinemAtically invnriant under time reflection. In

order that it be c ynqmlcplly invariant, 7-1 must b3 such that

Since H is an oven function of the components of , the

latter are to be paired with the aid cf imaginary mntrices, characteristic

cf tha variable3 of the second kind. The source term is invqriant if srurce

and field trpnsform in the SAM3 Way.

The correlaticn between spin nnd statistics enters on obsorving

that an imaginary L , is characteristic of half-integnl spin fields.

We can prove this by remarking that all the transformation properties of

are satisfied by
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non-negative matrix, one can only satisfy the first equation of (29) with an

imaginary L- . which produces skew-Hermitian field components 7.

But the invariance of the Lagrange function is not the correct criterion for

invariance under time reflection. The revrsal of the time sense inverts

the order of ' and CT. , and thus introduces a minus sign in the

action integral, which can only be compensated by charing the sign of

in (4). We shall describe this as a transformation from the algebra of the

operators to the complex conjugate algebra of op3rators .

Since the linear transformation designed to maintain the f-rm of

£ (k. a #'),~jhas ef fectively replaced wi th ~ ~ ~ ~ .3. '
the criterion for invariance rends

The derivative term in is indoed Invrinnt since the matrices J"

and are real ani imaginary, rospectivoly. W-3 rscribi this by

saying th-t the theory is kinematically invriant under time reflecticn. In

order that it be rlynanecnlly invariant, 7 must bg such that

A,(99 0~(w '

Since H is an oven function of the compnents cf , the

latter are to be paired with the aid cf Imaginary mtrices, characteristic

of th3 variables cf the secnnd kind. The srurce term is invaRricnt if srurce

4and field trpnsform in the same way.

The correlation botween spin ane statistics enters on observing

that an imaginary L w is characteristic of half-integrnl spin fields.

We can prove this by remarking that all the transformation properties of

are satisfiad by
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where L. is the latrix describing th3 reflecticn of the first space

axis. The latter form is a consequence of

L" S, Ll --S-

The assontial point with regnrd to the roolity f L o is tho t -().V

is F renl matrix, whence

e " , r

Now S, must possess the same eigenvnlues as say, which implies

that L9  is real for an integrl spin fielV, and Imsginazry for a hslvf-

integral spin fiel. The roquiremrnt rf time reflection invariance thus

restricts fialds of the first (B.E.) and second (F.D.) kin! to integral and

half-intogral spins, respectivaly. This correlnticn is elsc, satisf-ctory in

thrit it iantifis the dCuble-vlu,3d, hPlf-int3gral spin fields with fields

of th3 saccn kind, of which 4 is qn even function.

We hva introducea sev'roql kin 1s of wen3ratrrs of infinitesiim-l

transfcrmations. A criterion for consistency is obtninad from the nltarna-

tive evaluations of the comimutptor of two such -3noratcrs,

namely

(JG.k t (:2 o

As a first exmple, we consider the two genorators

- ( +J((
and

-26-



in the retArded description. In prepar'ition for the test, we rerAirk that

T T. dx)

~ dJE 7A TA , TA T.,J

Since:

In th3 absonce of' an exterrxil sriarce, r^.is sy=~3tricil nnc

eiv-3rgo3nC3JeSS, inli , v, 'nre ccnserv.Ad. For siTlpicity, we shnll cenfino

our verificsiticn to, the situAtirn of' nc sour'ce, in which the infini-

te sima I is 'istributrl In the raoicn betwe3n Or: nnd

7 Cj Fence
C,

4 The consist 3flc requirement

j then deAiinds th-it
+ ( - (30)

-27-



which is indeed true in virtue of the equivolenC3 b3tw3en (W .)

induced by the displ-cement 4- , awq r 'S . /1i), induced by the coordinate

trnsformation ', a XA# d- .

Altornmtiv forms ef Pv and -j ere convenient for test-

ing the ccnsistency of and c,. The following rala-

tions derived from (16),I A I, A mv)(A-.,, SI ,

p
enable us to write V as

V

whore = x (V

I A 4  A At
and

r I

In virtue of tha artisymnetry of A i V in the first two indicos,

OA A, V is autcrAtically divergenceloss and (
4ces net contribute to the

enirgy-mcmentum vector PF

but does enter in

=(* X A#-A

+ A Xa P1)I

-28-



The components of PV in m local coordinate system 'Ira

"tr - I "

while those of , are O N O

"J. I A I~
TA (Aid ) ()

I

The quantity F , is clf-ely relstee to the infinitoustr.l

expression of the scnl-r character cf ,

We can, indeed, conclude that

if H is nc r-cr3 than qutvritic In the crmpcnents of viricus independent

tfields. We shpll also rrv3 this without the latter restriction, but, for
* simplicity, with the limitatlcn that there are nr oqu.ticns of constreint.

Th3 commutation ralo'ticns e'juiv~lent to (30), Ex f' (.. v

[4j

* imply thatI~~X, /v,. ] !,.,,
wh,3re ,J - 29-

-29



This enables one t( rixpress tha scelar requirement on Hin the form

The components L(~
-~ ~ x. W)r!(A ~uq ,

do~~~ ~ ~ nc incv h- nnw Acccr-lini' tc cur sim~plifying assump-

tion cf no constraint 3quatirns, tha cc=.mutatcrs (anti -cr..1muta t 'Ts) ct all

tfia3ll cnmpcf3nt:3 at ( Fin,! A# cnntain the th3 thr ,e-i.nmsirnPA delta

function ~(I A') , n! thirafcra v"inish when rmultinli.o by

XF) Furthnrmcra,

and

frcmn w1-1ch we crbtnin

With this infr-'rmrt-n, th3 prcocf is easily 3x-nr-K to Rl ccrcn3rts of

*Th3 ccnsistancy of the C.3n,.rlitors - nmd

A-

requirss tha



which can nc-w bs v~rifi*ed from the oxrressio-ns (31) and (32), with

Ou~r ccn9qir~ti'-ns thus far specificnIly oxcl.ulo~ the aloctro-

j mvgnatic fieV (ani thQ grnvitaticn4l field). We intruca tho crcapt rf

chargi byr requirirg th~t th3 L-tirong f'unctirn b3 Invnri~int und4er cc-nstqnt

phe~so (special. g-.up) trinsf-rmotti-ns, the inflnitaisimpl vvrsirn rf which is

jA

*Hara CC A is n ccnstsint, nni is -in imjginFnry m~trix which cvm

be viewa! is %t rctnticn r-'trix reforring tc ai S-P'c, Cthir thnqn the r. ur-

(4imensien-l wcrl. Thj Invnriinco r:quirornmt ir.rlibs thnt

,~nF~_0
- b

RnO th-it

Wo nrw writ3 tho gQY13r'd viri'iticn Fis

whe re 3 4 chna~cterizing 1(,cpl phnse trvnsfr.-Ption, is R.n arbitrrryIfunctlc'n of A , cnsistent wit censtaxt vip1uos on G ancl. on T

The adlitienal ccntributirn trF thereby rrurucal Is

.z d
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which can nr w b3 vWrified from~ the expressions (31) and (32), with

Our ccnsidroratirns thus far specific'dly oxclula th6 aloctro-I gan.tic f oVl (ani tho grnvitaticnAl f ield) . We intrr 3UC3 tho ccnrcapt r f

* ochargi by reqjuirin~g thnt, th.a L-%grqng-3 functirn b3 invwri'nt un'4or ccnstinrt

phaso (special grnug)) transf,,rmptti-nst the- infiiitasirnst V3rsir-n (-f which is

Hari ('A is Ft ccnstnnt, nnA is nn ir-Apnnry ma~trix which c"n

be iviewe ts R rotnticn rptrix r3forring' tc a sp-c. other thnn the f. ur-

dirnensirn-1 wrld. Th) invnriince r~quir-ur~int ir.rli3s th-t

In

OF r

aind thit

/-/ (,( -)

Wa n. w writ-i tho penorl vnrinticn as

where J-4A chnractorizing % loopil phnse trv~nsfcr.vtiefl, is Rn ar~tr, ry

functicn of A , cnsistent with censtast vdluos on 0 and on -

The aiitir~nal ctntributirn to Ln thereby rn-ucal IS

-31-



whsre

j is tha charge-curra vctr'r. The sttetirnary P',ctirn principlo requires that

nv yi 3lrls as the phRse transfr'rm-ttion gen3ratcr

A -A3
where CC) is th-3 charge rperator.

Th inega scurcoin dIf, rm 3)

I. 7

whence

This commutAc-t n rulatin also fc-,lcWS 4irectly from th.3 sivnificanca -'f

indiicating thc, crnsistency of thi. lnttar with Y*

4We shall surrose thpt tha ma.trix I-; an )Ils:nont of th,3

nlgebrn F-3nl)rnted by "k r nA,~ It C -Ii.ws

that com-utas with -r&4~n th~rfcfuo thmt thq latter is explic-

itly Hermitian,

-32-



Such an antisyrmetricnl, imaginary matrix pnssesses real eigenvalues which

are symmetrically distributed abrut zaro; ncn-vanishinv aigonvalues occur in

oppositely signed pairs. Since E commutes with qll members of the

above-mentioned algebra, thi charge-bearing charActer of a Civon field depends

upon the reducibility cf this algebra. Thus, if the algebrm for a cirtain

kind of fiell is irreducible, the only matrix commuting with all mombors Cf

th3 alroebr% is the symmetrical unit matrix. Hence e a ) , nnd thi field

is elactrically neutral. If, hrwever, the matrix algO'ra is reducibl3 tc twc

similar nlgebres, as in

tha matrix exists an,' has the form (with the sme partiticning)

This describes n charg"v-i fielo, cr.o-I Of Tarticlos with chargs + e

tha eipenvnluos cf - If throe similar alg sres ara invcIvea,, the

I fiel contains particles with charges ,

To present asA liagcnal mntrix, we must fcregr the choice

of Hermitian field cfmpcn.mts. Thus, for the oxamrle of R ch.irgad F. D. field,

0 where the field components decrmrose into ',, , , corresponding to the

structures (34) and (35), the mutually Hermiti-n crnjug-te operators

I ar3 associated with eipenvalus + - .nd - - re9srctively. On

intr&.ucing those fielO ccmpcnonts, the Ieriv-tiva term in thi L-!-rnnge func-

tion, tha electric current vectrr, andi the ccmutaticn rolations, rosractively

re '-,,ad, h,.' ., ,4. J. , ,t

-33-



and , _

There is evident symmetry with respect to the substitutirn iVt j 
Since Y- in- are Hermiti-n cenjug.ta opornters,

w,3 cnn nrbitrnrily select one -s the primary ncn-Hermltinn fiol. 'e shill

writo

ii
and

This yields tho fcllc'winr fcrms for (36), (37), nn. (3F)

I7

I
and tb 2  . =

I Tr express the n-w slightly obscurid symmetry between r.qitiv3 -nd ne'-gtive

cherge, w3 cll. the charge ccnjurnt 3fiet .

I and state this symmetry m.n invarinnce under tha substitution Y4-4 ', 2 ' -C.

-34-



The matrices t Cto, 3 obey

and
e,

since they %ru purely Imarinary matrices. One should also recall that

is an qntisymmotricnl, imaginary matrix. if we were to depart from these

special structures by subjecting all matrices to -n arbitrary unitary trans-

fcrmmticn, we should find that the only formal changes occur in (41) and (42),

where the matrix B appenra mcdified by an orthrgrnal, rathor thrin

a unitary transfcrmation. Hence, in a genrq1 representatirn these oquCtions

read

A

where C still exhibits the symmetry cf 1T, arrcpriate to tha erxirple of a

Ihalf-integral field,

The commutotion relations (40) Fre in th-3 cannnicnl frrm which

corresponds to the division of tha independent field crmrnn--nts into two sots,

such that cne has vanishing anticfmmutatcrs (cmmutators, for an integrnl srin

field) among members of th3 snrie set. The Fenorntcr cf chnnges in

and Eq. (27) in the notation 'ef th3 chargv .  h-1f-integri srin

field example, is

- -'

which can be deducted directly from the LagranC, function derivative term (39).

Assrciatad with the freadcm of Ciltering the Lagrange function by the ad-citicn

of q divergence, are various expressions for genirating o~rators of ckenges

-35-



in the field compc'norts. Thus, we hMve the following two simplo possibilities

for the lerivmtivo term stnd the associ~tsd genon'ting eparitcr,

If

I -71

Thie rsntl of) raa, ,fr rimplenc i -it the reInc~ ~trolu-

Stions in the olctrrcnvnti c f ,.I il fnc~ nhni & ro .r sbcthe



to the generfil gAure triwaformntion,

-e A

The Lagrange function we haive been c-naiderinr mlters in the frllrwing Manner,

jThe nlditicn of th3 electrn2I.gnetic field Lagrsrig, function,

, AJ -5,~~)1, r/94 / 1A

;rr'vifics si ccmp.)n.,itinFp quantity thrcugh the Fasociated cauf- trnsfr rrrti cn

The tarm involving thq externAl current je is effectively Fuau.*e invwnr-

i'qnt if

since th3 nreIfficatirn Is in the form- of P divarr.unc.). In tho sname sense,

V ~ there is no cbjactir'n to emtlc7yln, R fcrrmn f tho Lpgran ' function in 4k-ich

the saccn 1I term of (43) is rep1ncic. by -Ij~-

We write the renerR] vari-ticn -f' , In the fcrm

which Rscribest ' 1  the sime trrinsfcrmstion pro.rtias nn the vrqdi3nt of

n scalqr, thus -roservinp the possibility nf Ra'ia trsnsfcrmiatic'ns under arbi-

trary coordinate rdefori'ntions. In q simla~r wny,

With ragnird to the derivation rf the elactrinatic fieli equrtions from the

action princirla, it should be nnod th'it poneral Fnuge invnriance requiras

that the a'urces of charr'e(" fields depend Implicitly upon the v-3ctor potentinl.
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. We express this dowon~ence by

Sine the infinitesinl gRuge trmnsformrticn, d ust

induce the chan , we larn that

One nbt'ins the fcllrwing field equs tions on varying F a anc A

in the crmplete La'renfe function, ( -Ill

0 where

_A '.

[" is the ccntributi'n tV the tctAl current vector Rsscci.te with charped field

scurces. We derive from (45) that

But the total current vectcr is caiveri-encelass in consequance rf tho electre-

m gmetic field oqu,.tirns. Therefore

which is in apreement with (33).

After renrvinv th3 t-3rns in C1r 0M#thrt crntribute t- the field

equations, we nre left with

-iLP; - .7 , + ,%. (FI, .J 4)

- Fill,,)', ,i( ,
i-38-



in which

I This term alters the field equati,-ns of chi-rgei fields,

/C' Ec ( c~

We hnve inticipnted that not rill components of 1I- commute with 2
The tensor is now obt~iinad Pis

where stnnds for (20), but withW - th3 ccmrleto LaprAnge

function. The ncticn rrinciile suprris tho Aiff3r.3ntinl oqurtti-nn

The ceiverpence tarm in (48) yields the infinitesimal pen-3rntor

while the Lagrange functirn with the lerivvitive terms (44) w-ull. rivo

The chanfe in tho ntctirn intoe'rpl prcd uce'i by ni vprintirn cf the

externmil current Is .'iven by

If CfJI hns the oxlctydivervenceless form

;A

whare J/-P vanishes on 11 and o! we find that
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which wakes it unnecesary to introduce sn externoil scurce tfrmt isa directly

coupled to the fil31d strength tan scr

The sp-clotl na~ture Cf ttH el3ctrrwlgnetic fieldO'~is appa~rent in

(3) Pnars dontling with the situation poculiqr to the electromagnetic field

are legion. Of tho t-1ce- literature, the closest in spirit to our prceeluro

is that of W. Pauli, llrnd. d;er Phys., Vcl. 24 (Edwire's Brothers, 1943).

the ferm of the operstor (53) genornting chnnges in the local electric fi3ld

Acomponents. Since cne of the field aquAti'-ne is the equotion (I ccnati'int

the thre3 v"nritionsF cannrt b.) grbitratrily assigned; the elactro-

majnetic fiald Pnd chmrged fialds ar3 n-t kinerr"ticatlly inde-tnint. This

is evidently an aspect cf the i'nu~e irvnrioincg thet links tha two types of

* fields. Alternatively, we sec from (51) th-t Ai is not a dynnmical

variable subject tr inda.3en4ont v'irietirns. But thure Is nr f13ld equattion

thitt expresses 01 in terms of independent cdynamicptl variables,

in virtue of the nrbltr-rin-)ss -sscciated! with tho oxistence 'rf ruge trnns-

formtion.tyie'ldB a ge3njrntln: or-,rnl t which, in crnsequ.3nc3' of (54) ; no5au' J

long3r contnins aloctrompfn-3tic field diynmical vmri,-ble3s. Thus, in aithar'*"ii

form, (51) or (52), ther-3 are nnly two kin.3m'tictlly indearendcont variations

of the doctrcmngnetic fieV quantities.

j We now Apply these generators to (4educo co~ut'jticn properties

for the Cgaug-i invnriAnt Mild v-trength ctcmcnante. Acccrding to the affect

of a varintion cupon the local cozronents of F/.
* we have

, r-
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whence

r -( ) A- ("j -0 (5)
i0

,tnd

In using 5 F , we must restrict the electric field variation accordingjt
(fe (o)JF --

which is identicnlly satisfied on writing

This yields the fcrm

The expressicn of ch~ng3s induced by ,, )

[F. ( ] -- )

then provides the commutatirn rror3rties

(, )d ((f
[F (ir) F (4)(') ,(_ " _x
(o I ( ) J r( , ' ,

4 where thi Intter is equivalent to (56).

An alternative derivation employs an infinitesimpl chance in the

externpl source, distributed on (the negative side of) o- , -) ,

-~X 41-



for which the naseiinted penerntA'r is

The altarnntion produc~A In the field c ,mpon~nts flrcwa Crfrnm tho field equation

(47) , rind tho form '-f (46) r~iven by

t. e, :- . d F 7-c'

Thus,

C40) j7 )(P)F ~ c

which yields the foll-win;- disc nlinuitiis In rn cr(-ssini7 th3 surface

IA
In the rotatrded elescrirtir-n, thise Oiscc-ntinuities nre tha P~ctu-l chngas in

the field ccmpen3nts cmn~ On rafarrrI ' tc tha penornl frrmuln (23) , we

c-btain

c)''Y~(&k I .'0V;)i

d 7 ~

In view rf the3 -r~trAry v'nlues of JcW n 0- thaseo qu-ticns imply

field strength commutaticn rolcktirns, which Pro identical with (55) awld (57).

We give n rolnted rcedura which Rlsc' illustrates tha rrssibility
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of evaluating coruutatere of field qumntitifos 't points in time-like reluation.

The two field equostions (47) and (58) e'tn b.3 co'mbined into (wo inccrrcrotte

with

,) A VM 4k b ) ( #

A changa in the extorn4l current, of the form (53), yields

wharo, in the retarded discription, -

(X) (oiz')

P nd is the discpntinuo-us functicn

We hnve R similar axrressin frr 5,J Cn comi-trinp the cc-

Officients -f i(5)(ur twr tr3atmants eqIcyIn,; axtarnml

srurces i~re thus distinguished hy surf,'co nny' vrlune distributicons of'

resroctively), we find

)4y Q.
(I FAJ

J.x Fjx)F.

The value of (x) FI (x) for 3quoil times Is than cbtsiinod frcm the

crefficir)nt ci' the olifferantivited deltP functirn a'f tho tirl3 c-c'rdinate, withj the nnticipnted result.
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In the Ari~rxiwtqt~on thoit newleots the dyn~micm1 reoi',ticn between

currents aind fialds 'it roints in timie-like relqitirzn, the eifferentii e3qm'tic~n

(60) hots the oluticn. /(x. - X'RA A l-~ j
V(4d Uai dOV 11 A -A dA 1C t- v1 A ) D4

where D.,(A-' is the i'amili'ir retorriod sc'luticn ci'

Had we omplcyad tha e ~vncad Oescrirpticn, /. Wc'Uld b3 r3rlncod by

- , where

aind tha adv'nneed sc'luticn ci' (61) woulc -iwpar.Sutctn'he t ruts

* we find

in which is tho hum-ienorus s., luti-n -f (61) rrvi.lad by

I Tho kinoznqticnl rolritirn botween th3 jlectrrmngn.tic fi?1V onri

chvrir~e, fieldf, -nl ' piven (J- is mr~c~t cJlu- rly indicqta& In et s-ocioi1

chcice of gpuoo, the sc.-call.A r-.1intirn F-ue

With this chric3, tho ccnstr'iint 3qu-tion for the el3etric fij1:i ra~ls

suc thott the scfilnr rc,,tonti-l is crnplteiy lot3mline(I by th3 ch-rf'o lonsity,

where F-= 'rit/'/



Evi~ently, 91o eoa net commt3 with th3 crinponrints rf chnrrod tid1da.

In this gauge, thon, the corendqnco of the al3ctric field upon the charped

fiolds is zmide explicit thrcugh th , racrp-sitirn of tho electric fioll intc

* trmnsv~iron and 1ewitudinil pe~rts,

= ) fi 4 -()J0

Tho inference thAt the tr'~nsverse fialds nre the inliarenr'ont

Aynmic-tl v-rinbles (-f th3 oloctr rImtic fl3JA in this gnuge is ccnfirmeO

cn 3x~uminin-, thi -,3n3"tt rs nn In13A

R.nd

( -

in viaw cf tho trnrsv*1rso n-tur3 -f 8. ,Eq. (62) . W3 c-in mnw

d- rivo thi cr.rnutti ~n -r-'"i -rtias rf thaEe r'yn',micsnl v'-rln los frCrn

ITT'

rrcducerl by the trnnsverse nfture rf those rju ntti--s. The~ LP~.r~nfe multi-

plier device prrmits us to 0,3duce thpt

(T I
14(fAItI i



The divorgenceleos ooqroter of the trRnsvp3rse electric field sup; lies the

infcrmation

I whence

Thj resulting commutator

r (A r))

k X,

is alsc ccnsistent with the transverse nture of . The remaining

ccmmutation rolations are

We shnvll use tho devica of th3 oxternpl current tr d rive the

commutation relktirns between the electromt-netic field tensor Pind the dis-

placemont generators P - . According to (49) ani (50),

; ~In which we have indcqte only thg r-iks containing the qxtar ro €

We consider[ an infinltesimil chnge in the l 2tter possessing tic form (53).

In the retarded description, the resulting changes of q rnd .7

on - are

=-j ( , t; -~9;

When expressed in terms of the generator



a lb t ollowiflc entrutatcra Pro inc'niwtur3d,

t

I~~~l 

r 
~~~ ' A

,A rX K~ J K ~ (4rA rAAV

r w) rjr-- rk r 3~ rJ f 1) t-, irncjz.. Jh-i

o~trrnimtie~ ?%A3d, in tho) rtidiqtin C'nupo, 13

IA' L LZ F
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In arrivinr Rt thi cxrrj~sicn fcr t'. th r uuu y cf

with A must l 3 tak3n intc- c~n *,4r)tiC'n, b'ft -,r- lucj no ict-u2.'

cr'ntributicn. v'nriaticn (.f' ach of th-. 1in!3T-3-nAlrt fialls .:ialds

-1V

-.47-


